
Services

June 25, 2024



Services June 25, 2024

Contents

Services 3
Mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Access any exchange inbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Mail Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Serial port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Sending data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Receiving data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Message queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Publishing messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Receiving messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Queue inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Queuemaintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Message data andmetadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Supported props . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Send amessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Readmessages in a channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Invoke namedmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A service module is like a built‑in api module. But unlike api modules, service modules are config‑
urable. For instance the mail service can be configured with the information necessary to connect to
mail servers. This means a flow that needs to send or receive emails does not need to contain mail
credentials and other sensitive information.

Services are accessed via the Servicemodule. getting access to a mail service with the configured
key myMail is done as follows:

1 var m = Service.get('myMail', Service.MAIL);

Now the variable m holds a reference to a mail‑service ready to use.

Services can usually also be used to set up flow triggers. In the mail service example, flows can be
triggered when emails are received from themail server configured in the mail service.

2



Services June 25, 2024

Services

The following services are available:

• Mail
• Serial port
• Message queue (MQ)
• Chat

Mail

Themail‑service module has functionality to list and sendmails.

Access any exchange inbox

When connecting a flowwith an Exchange server via the app‑only oauth profile, a flow can access any
desired inbox. The way to do this is through the method impersonate as in the following example:

1 var m = Service.get('myMail', Service.MAIL);
2 var sarahsMail = m.impersonate('sarah65@customdomain.outlook.com');
3 var sarahsInboxContents = sarahsMail.list('Inbox');

Send

Sending amail requires a list of recipients, a subject and a body and has optional support for defining
the from address, list of cc‑addresses and attachments.

::: tip Note on asynchronicity

Note that this method is asynchronous and immediately returns a task object that you must use to
wait for the send to complete. Failure to do somay result in mail not being properly sent and/or send
errors not being raised in the flow. Correct usage can be seen in the examples below.

:::

Arguments

In a call like send(to, subject, body, options) the arguments are as follows:

• to is a list of email‑addresses which will receive the message
• subject is the subject of the mail
• body is the main text of the mail

3



Services June 25, 2024

• options is an optional object which may contain the following properties
– from the sender address (default is “manatee@sirenia.eu”). Setting this value is not per‑
mitted by somemail servers.

– cc is a list of cc‑addresses
– html is thehtmlbody if any (for exchange servers this takespresedenceover the textbody)
– attachments is a list of files to attach (each item is a path to a file)
– html is the html body if any
– importance one of the values 'low', 'normal', 'high' indicating the priority of the
message

Examples

1 var m = Service.get('myMail', Service.MAIL);
2 // Simple send
3 var transmissionTask = m.send(['jonathan@sirenia.eu'], 'Hello from a

bot', 'Manatee says hello');
4 transmissionTask.wait(10000);
5 // With all options
6 var task = m.send(
7 ['jonathan@sirenia.eu'],
8 'Hello from a bot',
9 'Manatee says hello',

10 {
11 'from': 'bot@somewhere.com',
12 'cc': ['martin@sirenia.eu', 'los@sirenia.eu', 'lykke@sirenia.eu'],
13 'attachments': ['C:/Users/SomeUser/SomeFile.txt']
14 }
15 );
16 task.wait(10000);

List

List is used to list mails in a givenmail‑box. The return value is a list of mail objects.

Arguments

• mailbox is the mailbox to list (default is the INBOX)

Examples

4



Services June 25, 2024

1 // List mails in inbox
2 var inbox = m.list();
3 var mailsElsewhere = m.list('someothermailbox');

Mail Object

Themail object returned from list has the following properties:

• id id of the mail
• to list of recipients
• cc list of cc‑addresses
• from sender address
• subject subject
• bodymail text
• html html mail body if any
• readwhether or not the mail is read/unread (property is writeable)
• attachments a list of attachment file paths on the local disk. The files can be accessed only
after calling writeAttachmentsToDisk() (described below)

• importance one of the values 'low', 'normal', 'high' indicating the priority of the mes‑
sage

• receivedTime a javascript date indicating when the message was received (IMAP and
Exchange)

• createdTime a javascript date indicating when the message was created (Exchange only)
• sentTime a javascript date indicating when the message was sent (Exchange only)
• lastModifiedTime a javascript date indicating when the message was modified (Exchange
only)

And the following methods:

• delete(mailbox) to delete the mail from the givenmailbox (default is INBOX)
• move(to, from) to move the mail between twomailboxes
• writeAttachmentsToDisk to write the attachments to disk (access them then via the
attachments property)

Finding a message and loading text from one of its attachments

1 var inboxMails = m.list();
2 // Find first message from 'foo@bar.baz' with subject 'invoice' at

least one attachment
3 var msg = _.find(inboxMails, function(m) {

5



Services June 25, 2024

4 return m.from === 'foo@bar.baz' && m.subject.indexOf('invoice') >= 0
&& m.attachments.length > 0;

5 });
6 if (msg) {
7 msg.writeAttachmentsToDisk();
8 // File data can now be read from disk
9 var attachmentTextContent = Fs.read(msg.attachments[0]);

10 }

Serial port

The serial port service module lets flows and triggers communicate via serial ports on the local ma‑
chine.

Data can be sent and received as either binary data or text. Receiving data can be done synchronously
or asynchronously as shown in the examples below.

Sending data

Sending data is simple ‑ obtain the service and give it a string or an array of bytes (numbers) to send.
Sending is always synchronous (returns after data has been sent):

1 var myDevice = Service.get('my-device', Service.SERIALPORT);
2 // Send text
3 myDevice.send('scan barcode, please');
4 // Send binary data
5 myDevice.send([0x09, 0x0A, 0x0B, 0x0C]);

Receiving data

All methods for receiving data come in synchronous and asynchronous forms such as receiveOne
and receiveOneAsync. They also all accept as their last argument an options object which can have
the following properties: ‑ timeout is an optional override of how long to wait for data to arrive in
milliseconds. The default is 3000. ‑ binary is an optional override of the format in which the data is
returned. truemeans a byte array is returned, falsemeans a text string is returned. Receiving data
as text requires the device to encode text by the same encoding configured in the serial port service.
The default is false.

6



Services June 25, 2024

Request / reply

As a convenience for the common task of sending a request and receiving a reply, tworequestReply
methods are available.

1 var myDevice = Service.get('my-device', Service.SERIALPORT);
2 // Send and receive text synchronously. Here we override the default

receive timeout
3 var barcodeText = myDevice.requestReply('scan barcode, please', {

timeout: 10000 });
4 // When binary data is sent, the data received is also binary data by

default - and vice versa
5 var replyBytes = myDevice.requestReply([0x09, 0x0A, 0x0B, 0x0C]);

The asynchronous form returns a task object. The task object behaves the same as the tasks used in
the Http and Task modules.

1 var task = myDevice.requestReplyAsync('scan barcode, please');
2 // ... Do other things while we wait for the response...
3 task.wait();
4 var barcodeText = task.result;

Receive onemessage

If we expect to receive a data message from the device, we can receive it like so:

1 var messageText = myDevice.receiveOne();
2 // ... or as undecoded bytes
3 var messageBytes = myDevice.receiveOne({ binary: true });

The asynchronous form offers no surprises:

1 var task = myDevice.receiveOneAsync();
2 // ... Do other things while we wait for the message...
3 task.wait();
4 var messageText = task.result;

Receivemultiple messages

Sometimesweexpect a device to sendmultiplemessages. If weusereceiveOne, there is a risk that a
message arrives between invocations and is lost. To address this situation, we can use receiveMany

7



Services June 25, 2024

. Its syntax is slightly more complex as we must provide the receiveMany method with a callback
which will be called for each receivedmessage.

The callbackmust return truewhilemoremessages are expected. Thismeanswhenwe receivewhat
we know to be the last message, we can return false and receiveMany will return control to the
flow immediately without waiting for the timeout to elapse.

Note that Api methods that show dialogs (for instance Dialog.input or Debug.showDialog) are
not supported within the callback. Use the callback to collect the messages ‑ parsing only enough to
determine the return value of the callback.

1 var receivedMessages = [];
2 // Listen for messages until the default timeout elapses and put them

in the array as they arrive.
3 myDevice.receiveMany(function(message) {
4 receivedMessages.push(message);
5 return true;
6 });
7
8 // Listen for messages until the 'BYEBYE' message is received (or until

the timeout elapses)
9 myDevice.receiveMany(function(message) {

10 receivedMessages.push(message);
11 return message !== 'BYEBYE';
12 });

This method also has an asynchronous form to enable parallel processing:

1 var receivedMessages = [];
2 // Listen for messages until the default timeout elapses and put them

in the array as they arrive.
3 var task = myDevice.receiveManyAsync(function(message) {
4 receivedMessages.push(message);
5 return true;
6 });
7 // ... do something else while messages are received ...
8 task.wait();
9 // Now we can process the messages in the 'receivedMessages' array.

Latest inboundmessages

This service module keeps track of the most recent messages received from the device. This can be
useful if a flow is triggered by the reception of a message and the flow needs to inspect themessages

8



Services June 25, 2024

preceding the triggeringmessage. Note thatmessagesareonlyadded to this collectionwhile a receive
operation is active on the serial port. An active serial port trigger will cause messages to be added. A
flow with a long running receive operation likewise.

The history is returned as an array of entry objects with the following properties: ‑ time is a Date
object indicating when themessage was received ‑ data is a string or an array of bytes depending on
the optional binary option

1 var history = myDevice.getLatestInbound();
2 if (history.length > 0) {
3 var lastEntry = history[history.length - 1];
4 // ... do something with the last received entry ...
5 }
6
7 // Get binary data in stead
8 history = myDevice.getLatestInbound({ binary: true });

Open / close port

Themethods for sending and receiving data will open the port automatically and close it again when
they are done. This means it isn’t strictly necessary to excplicitly open and close the port. If for any
reason it is undesirable for the port to only be open while it is in use, you can open and close the port
excplicitly from your flow:

1 myDevice.open();
2 // ... communicate with device
3 myDevice.close();

Note that manateemanages the state of the physical serial port intelligently. A serial port trigger and
a flow can use the same serial port service at the same time. This means that calling .open() and .
close()may not have a direct effect on the physical port if a trigger is already keeping the port open
in order to listen for triggeringmessages. The open and closemethodsmerely express intent to use
theport formore thanoneoperation. As such theyguarantee that theportwill notautomatically close
between separate operations. Excplicitly closing the port isn’t a strict requirement as it will happen
automatically when the flow has completed.

Byte / string conversions

The serial port servicemodule exposes themeans to convert back and forth between byte arrays and
their string representation under the encoding configured on the serial port service in cuesta.

9



Services June 25, 2024

1 // myDevice service uses us-ascii
2 var text = 'abc';
3 var bytes = [ 0x61, 0x62, 0x63 ]
4 var decodedText = myDevice.bytesToString(bytes);
5 var encodedBytes = myDevice.stringToBytes(text)
6 // text and decodedText are now the same
7 // bytes and encodedBytes are now the same

Message queue

The message queue service module enables triggers to communicate via message queue messages.
It also enables flows to send and receive suchmessages.

Interactingwith amessage queue from a flow requires obtaining a preconfiguredmq service instance
and getting a live connection from it:

1 var mqConn = Service.get('my-mq', Service.MQ).connect();

For this code to work, an mq service must exist with the key my-mq

Publishingmessages

Publishing a message can be as simple as the following example:

1 mqConn.publish('amq.direct', 'myQueue', 'The message body often
consists of json');

This simple example specifies anmq exchange (amq.direct), a routing key (myBinding) and ames‑
sage body. To receive this message, an mq client would need to have bound a queue to the amq.
direct exchange with the routing key myBinding.

Props and headers

In some cases, we need to add somemeta data to amessage. An example could be RPC style commu‑
nication (Remote Procedure Call), wherewe request a server to carry out a task and report backwhen
it’s finished. This usually requires specifying a correlation id and a reply address.

1 var props = {
2 correlationId: 'correlation123',
3 replyTo: 'weatherReplies',

10



Services June 25, 2024

4 headers: {
5 'CUSTOM-HEADER': 'Some header value'
6 }
7 };
8 mqConn.publish('amq.direct', 'weatherRequests', 'How is the weather

over there?', props);

The reply to thismessage could subsequently be received by receivingmessages fromaqueue bound
to theamq.directexchangewith the routingkeyweatherReplies. Toverify that the reply is indeed
a reply to this specific message, the correlation id can be used.

Receivingmessages

Consumingmessages fromaqueue canbedone either onemessage at the time, or several at the time.
Both methods support both synchronous and asynchronous operation.

receiveOne takes just one message off the queue and returns it synchronously (or waits in vain and
returns null):

1 var message = mqConn.receiveOne({ timeout: 5000 });
2 if (message) {
3 message.ack();
4 Debug.showDialog('Received message ' + message.body + ' with

headers ' + JSON.stringify(message.props.headers, null, 2));
5 } else {
6 Debug.showDialog('Didn\'t receive anything before timeout');
7 }

The default waiting time is 3000 ms, but can be changed by passing a suitable settings object.

receiveOneAsyncdoes the same, but allows the flow todoother thingswhilewaiting for themessage
to arrive:

1 var task = mqConn.receiveOneAsync({ timeout: 200 });
2 // .. do other things here in parallel with the message reception
3 task.wait();
4 if (task.result) {
5 var message = task.result;
6 message.ack();
7 Debug.showDialog('Received message ' + message.body);
8 } else {
9 Debug.showDialog('Didn\'t receive anything before timeout');

10 }

11



Services June 25, 2024

receiveMany takes messages off the queue until the callback it is provided returns false or until
the timeout elapses, whichever comes first. Note that only one unacknowledged message can be
received at the time. So in order to receive message number two, message number one must first be
acknowledged (by calling message.ack(), message.nack() or message.respond(..)).

1 var messages = [];
2 function handleMessage(message) {
3 message.ack();
4 messages.push(message);
5 return messages.length < 2;
6 }
7 mqConn.receiveMany(handleMessage, { timeout: 10000 });
8 if (messages.length > 0) {
9 Debug.showDialog('Received messages ' + messages.map(function(m) {

return m.body; }).join(' + '));
10 } else {
11 Debug.showDialog('Didn\'t receive anything before timeout');
12 }

The above example waits ten seconds for two messages to be taken off the queue. As they are taken
off the queue they are added to an array for later inspection. The callback signals with its return value
when it has received enoughmessages.

receiveManyAsync does the same, but allows the flow to continue work while waiting for the mes‑
sage reception to complete.

1 var messages = [];
2 function handleMessage(message) {
3 message.ack();
4 messages.push(message);
5 return messages.length < 2;
6 }
7 var task = mqConn.receiveManyAsync(handleMessage, { timeout: 10000 })

;
8 // .. do other things here in parallel with the message reception
9 task.wait();

10 if (messages.length > 0) {
11 Debug.showDialog('Received messages ' + messages.map(function(m) {

return m.body; }).join(' + '));
12 } else {
13 Debug.showDialog('Didn\'t receive anything before timeout');
14 }

12



Services June 25, 2024

Queue inspection

The connection object seen in the examples above further has the properties messageCount and
consumerCount:

1 var messageCount = mqConn.messageCount;
2 var consumerCount = mqConn.consumerCount;

Thesemay be used to verify the correctness of the queue infrastructure configuration or similar tasks.

Queuemaintenance

When takingmessages off a queue as in the above examples, a message object is obtained. It has the
following methods:

• messsage.ack() consumes the message from themessage queue
• message.nack() returns the message to the message queue. Note that this means your flow
will be able to continue receiving this same message over and over. This can be useful if there
are other subscribers to the queue, who are better suited to handling the message.

• message.respond(‘response text’) sends a response. This will only work if the original mes‑
sage came with a reply_to property. Correlation id (if there is one) is also transferred when
this method is used. Sending a response will automatically ack the message, if this hasn’t al‑
ready been done.

Themessagequeueclient inmanatee is setup toonlyallowoneunacknowledgedmessageat the time.
Thismeans you cannot receivemoremessages until youhave calledack(),nack()orrespond(..)
on the ones you have previously received.

Message data andmetadata

Themessage object provides access to the contents of the message through the following members:

• message.body The body of the message in the form of a string
• message.props.headersTheheaders in the formofanobjectwherepropertiesand their values
corresponds to headers in the message

• message.props.replyToRetrieves amessageproperty value. Returnsnull if themessagedidn’t
have that property. See the list of valid property names below for more supported props.

Supported props

Themessage properties that should be specified when publishingmessages depend on the situation.
Occasionally, the recipient of themessage has some required properties in order to be able to process

13



Services June 25, 2024

a message.

The supported properties when publishing messages are as follows:

• appId (string)
• clusterId (string)
• contentEncoding (string)
• contentType (string)
• correlationId (string)
• expiration (string)
• messageId (string)
• replyTo (string)
• type (string)
• userId (string)
• deliveryMode (number)
• priority (number)
• persistent (bool)

Chat

The chat service is a generic service configuration with Slack as its currently only implementation. It
supports triggers and provides a module. The module has the following functionaliy.

Send amessage

You can send a message to a given “channel” by getting an instance of the service and invoking the
sendmethod:

1 var c = Service.get('keyForService', Service.CHAT);
2 // Send the "foo" on the "bar" channel
3 c.send("foo", { channel: "bar" });

Readmessages in a channel

Read the latest messages in a channel by:

1 var c = Service.get('keyForService', Service.CHAT);
2 // Get the latest messages from the given channel
3 var messages = c.read("test");

Eachmessage will have the following properties:

14



Services June 25, 2024

• text the content of the message
• user the user id of the author of the message
• username the username of the author
• channel the name of the channel in which the message was sent
• ts a timestamp/identifier for the message

Invoke namedmethod

You can invoke arbitrary methods on the chat service (e.g. Slack) by using the invoke method. It
takes three arguments;

• operation the name of the operation/method to invoke,
• arguments for the method (optional),
• method the http method to use (optional ‑ default “GET”)

For the Slack type chat you can lookup the operations etc in their API description ‑ for example:

1 var c = Service.get('keyForService', Service.CHAT);
2 // Invoke the `conversations.list` to list all channels
3 var channels = c.invoke("conversations.list");

15

https://api.slack.com/web

	Services
	Mail
	Access any exchange inbox
	Send
	List
	Mail Object

	Serial port
	Sending data
	Receiving data

	Message queue
	Publishing messages
	Receiving messages
	Queue inspection
	Queue maintenance
	Message data and metadata
	Supported props

	Chat
	Send a message
	Read messages in a channel
	Invoke named method



